

World Journal of Food Science and Nutrition www.worldnutritionjournal.com Online ISSN:

Received: 24-07-2025, Accepted: 23-08-2025, Published: 09-09-2025

Volume 1, Issue 1, Jul-Sep, 2025, Page No. 1-6

Improved storage technologies to reduce post-harvest losses and enhance Food Security: A review

Tolcha Techane Alemu

Department of Post-Harvest Management, Jimma University, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia

Abstract

Post-harvest losses significantly impact global food security by reducing the availability of nutritious food and economic returns for farmers. This review evaluates recent advancements in storage technologies aimed at minimizing these losses across various crops. It analyzes traditional and modern storage methods, including controlled atmosphere storage, hermetic storage, and innovative cooling and drying techniques. Emphasis is placed on technologies that improve the preservation of quality, reduce spoilage, and extend shelf life while being economically feasible for adoption in developing regions. The review synthesizes findings from multiple studies highlighting how improved storage contributes to reduced wastage, enhanced food availability, and increased income stability for stakeholders. Challenges such as infrastructural limitations, cost barriers, and knowledge gaps are discussed. The paper concludes by advocating for integrated storage solutions combined with farmer education and policy support to maximize the benefits of storage technologies in strengthening food security globally.

Keywords: Post-harvest losses, Storage technologies, Food security, Controlled atmosphere, Hermetic storage, Crop preservation, Spoilage reduction

Introduction

Food security remains one of the most pressing challenges facing the global community today. Despite significant advances in agricultural production, ensuring that adequate, safe, and nutritious food reaches consumers remains a critical issue. According to the Food and Agriculture Organization (FAO), approximately one-third of all food produced globally is lost or wasted, representing about 1.3 billion tons annually. Among these losses, post-harvest losses—those occurring between harvest consumption—account for a substantial share, particularly in developing countries. These losses not only compromise food availability but also have severe economic and environmental implications, including increased greenhouse gas emissions and wasted natural resources.

Post-harvest losses are especially pronounced in regions where agriculture forms the backbone of livelihoods but where infrastructure and technology for proper storage and preservation are lacking. In low- and middle-income countries, losses can reach up to 40-50% for certain staple crops like grains, fruits, and vegetables. These losses arise due to a combination of biological, physical, and mechanical factors such as pest infestations, microbial spoilage, inadequate drying, temperature fluctuations, and poor handling practices. The consequences extend beyond food quantity, also affecting nutritional quality and market prices, which exacerbate poverty and malnutrition.

Improving storage technologies represents a critical intervention point to mitigate these losses. The development and adoption of effective storage solutions can significantly enhance food security by preserving the quantity and quality of harvested crops, stabilizing food supply chains, and improving farmer incomes. Traditional storage methods, such as open-air drying and conventional granaries, often fail to provide the necessary protection against pests and environmental factors. Therefore, modern innovations have emerged to address these limitations, offering better control over storage conditions.

One of the key advancements in storage technology is the use of controlled atmosphere (CA) storage, which involves regulating oxygen, carbon dioxide, and humidity levels to slow down respiration and delay spoilage in stored produce. CA storage has been widely adopted for fruits and vegetables, extending shelf life and maintaining quality for longer periods. Hermetic storage is another promising technique that creates airtight conditions to prevent oxygen ingress, thereby controlling insect infestation and fungal growth without the need for chemical pesticides. This technology is particularly suitable for smallholder farmers due to its cost-effectiveness and ease of use.

In addition to these, improved drying methods, such as solar dryers and mechanical dryers, have gained attention for their ability to reduce moisture content efficiently and uniformly, thus limiting microbial activity. Cold storage and refrigeration technologies, although more resource-intensive, are also vital for high-value perishables and for regions with access to reliable energy sources.

Despite these technological advances, widespread adoption remains a challenge. Factors such as high initial costs, lack of awareness, insufficient training, and inadequate infrastructure hamper the deployment of improved storage solutions, especially in rural areas. Furthermore, climate variability introduces additional complexity by influencing pest dynamics and storage conditions, requiring adaptive and resilient storage systems.

Addressing post-harvest losses through improved storage is not merely a technological issue but a multifaceted challenge that demands integrated approaches involving policy support, capacity building, market linkages, and research. Governments and international agencies have increasingly recognized the role of post-harvest management in achieving Sustainable Development Goals (SDGs), particularly those related to zero hunger, poverty reduction, and sustainable agriculture.

This review aims to provide a comprehensive overview of the current state of storage technologies designed to reduce post-harvest losses and enhance food security. It synthesizes recent research findings, evaluates the effectiveness of different technologies, identifies barriers to adoption, and discusses opportunities for future innovation and policy intervention. By highlighting successful case studies and emerging trends, this paper seeks to inform stakeholders—including researchers, policymakers, and practitioners—about best practices and strategic directions to strengthen food systems globally.

Content (Introduction)

Context and Importance of the Topic

Food security—defined as consistent access to sufficient, safe, and nutritious food—is a foundational element of human well-being and sustainable development. Globally, the ability to produce food has improved markedly over the last century, driven by advances in agricultural productivity, mechanization, and biotechnology. However, increased production alone does not guarantee food security. In fact, an estimated one-third of all food produced worldwide is lost or wasted along the supply chain, severely undermining efforts to feed a growing global population expected to reach nearly 10 billion by 2050.

Among these losses, post-harvest losses represent a significant bottleneck in food systems, particularly in lowand middle-income countries where infrastructure and technological capacity remain limited. Post-harvest losses refer to the degradation of quantity and quality of agricultural produce after harvesting but before consumption. These losses occur at multiple stages handling. storage, transportation, processing, marketing—and can be caused by mechanical damage, pest spoilage. microbial infestation, and unfavorable environmental conditions. For instance, in sub-Saharan Africa and South Asia, post-harvest losses can account for up to 40% of staple crops, severely reducing food availability and farmers' incomes.

Statement of the Problem

The implications of post-harvest losses extend beyond mere economic loss; they contribute significantly to food insecurity, malnutrition, and environmental degradation. For smallholder farmers, who constitute the majority of producers in many developing countries, these losses translate into reduced marketable surplus and diminished livelihood resilience. Moreover, loss of nutritious foods such as fruits and vegetables impacts dietary diversity and public health outcomes, exacerbating micronutrient deficiencies.

A critical driver of post-harvest losses is inadequate storage, which exposes produce to biotic and abiotic stresses. Traditional storage systems—such as open heaps, rudimentary granaries, and conventional warehouses—are often ill-equipped to mitigate spoilage factors like insect pests, fungal pathogens, temperature fluctuations, and humidity. These storage inadequacies lead to rapid deterioration in both quantity and quality, triggering cascading effects along the food supply chain.

While improved storage technologies have emerged over recent decades, including hermetic storage, controlled atmosphere storage, solar drying, and refrigeration, their adoption remains inconsistent and limited. Factors such as high upfront costs, limited awareness, insufficient technical knowledge, and lack of enabling policies impede widespread implementation. Additionally, storage solutions often need to be tailored to local contexts, crop types, and socio-economic conditions, requiring a nuanced understanding of both technological and institutional dimensions.

Research Question and Hypothesis

Given this background, the central question guiding this review is:

How can improved storage technologies effectively reduce post-harvest losses across diverse agricultural systems, and what role do these technologies play in enhancing global food security?

To explore this, the review hypothesizes that:

- Hypothesis 1: Adoption of modern storage technologies significantly reduces post-harvest losses by improving preservation of crop quantity and quality compared to traditional storage methods.
- **Hypothesis 2:** Effective integration of storage technologies with supportive policies, farmer education, and infrastructure development enhances their impact on food security.
- Hypothesis 3: Context-specific storage solutions that consider crop characteristics, climatic conditions, and socio-economic factors are more successful in reducing losses and improving livelihoods.

Objectives of the Review

This review paper aims to systematically synthesize recent research on improved storage technologies to:

- 1. Analyze different storage methods and their effectiveness in reducing post-harvest losses.
- 2. Identify the main challenges and barriers limiting technology adoption.
- 3. Highlight successful case studies and innovations from different geographical contexts.
- 4. Discuss the broader implications for food security, policy, and sustainable agricultural development.

By addressing these objectives, the review seeks to provide actionable insights for researchers, policymakers, practitioners, and farmers to design and implement more effective storage interventions that can contribute meaningfully to global food security.

Methods

Research Design

This paper employs a comprehensive narrative review methodology to critically examine existing literature on improved storage technologies aimed at reducing post-harvest losses and enhancing food security. Narrative reviews are particularly suited for synthesizing broad and complex topics, allowing for qualitative integration of findings from diverse study types, including empirical research, case studies, technology assessments, and policy analyses. The objective is to provide a holistic understanding of the current state of knowledge, identify gaps, and highlight opportunities for future innovation.

The review process followed a systematic framework encompassing identification, selection, evaluation, and

synthesis of relevant studies published in peer-reviewed journals, conference proceedings, reports from international organizations, and other credible sources between 2000 and 2025. This time frame was chosen to capture contemporary developments in storage technology while recognizing the evolution of traditional methods.

Data Sources and Search Strategy

A comprehensive literature search was conducted across multiple electronic databases including Scopus, Web of Science, PubMed, AGRICOLA, and Google Scholar. Additionally, grey literature sources such as FAO reports, International Food Policy Research Institute (IFPRI) publications, and technical documents from agricultural development agencies were included to enrich the review with practical insights.

Keywords and Boolean operators were employed to ensure extensive coverage of relevant studies. Search terms included combinations of:

"post-harvest losses," "food losses," "storage technology," "hermetic storage," "controlled atmosphere storage," "solar drying," "cold storage," "food security," "crop preservation," and "smallholder farmers."

The search was iteratively refined to include region-specific terms (e.g., "sub-Saharan Africa," "South Asia"), cropspecific terms (e.g., "grains," "fruits," "vegetables"), and technology-specific terms. The initial search yielded over 2,000 records.

Inclusion and Exclusion Criteria

Studies were included based on the following criteria:

- Focus on storage technologies addressing post-harvest losses
- Empirical data or documented evaluations of storage methods.
- Studies conducted in diverse geographical contexts, especially in developing countries.
- Publications from the year 2000 onwards.
- Available in English.

Exclusion criteria included

- Studies unrelated to storage (e.g., pre-harvest interventions without storage component).
- Opinion pieces or editorials without empirical data.
- Studies focusing solely on food waste at consumer level rather than post-harvest handling.
- Duplicate publications and articles with inaccessible full text.

Following the application of these criteria, approximately 150 studies were shortlisted for detailed review.

Data Extraction and Analysis

A structured data extraction form was developed to systematically capture key information from each study, including:

Type of storage technology evaluated.

- Crop(s) studied.
- Geographical and socio-economic context.
- Methodology and duration of storage assessment.
- Measured outcomes such as loss percentage, quality retention, economic impact.
- Challenges and barriers identified.
- Recommendations and innovations.

The extracted data were qualitatively analyzed to identify common themes, technological performance trends, adoption constraints, and impacts on food security indicators. Quantitative data from various studies were summarized descriptively, noting ranges of loss reduction percentages and storage durations.

Comparative analyses were undertaken to evaluate the relative effectiveness of different storage technologies across crop types and regions. Special attention was given to the interplay between technology characteristics and contextual factors such as climate, infrastructure availability, and farmer capacity.

Procedures for Synthesis

The synthesis followed a thematic approach, organizing findings into key categories:

- 1. Traditional Storage Methods and their limitations.
- 2. Modern Storage Technologies: hermetic storage, controlled atmosphere, drying techniques, refrigeration, and others.
- **3. Impact on Post-Harvest Loss Reduction**: empirical evidence from various studies.
- **4. Barriers to Adoption**: economic, technical, social, and policy-related constraints.
- 5. Opportunities and Innovations: emerging trends, integration with digital technologies, and scalable models.

Case studies demonstrating successful implementations and lessons learned were integrated to contextualize findings and illustrate real-world applications.

Quality Assurance and Bias Mitigation

To ensure reliability and reduce bias, study selection and data extraction were independently conducted by two reviewers, with discrepancies resolved through discussion. Quality appraisal considered study design robustness, sample size, and relevance. Although the narrative nature of the review limits quantitative meta-analysis, transparency in methodology and critical appraisal of sources were prioritized.

Results

Overview of Post-Harvest Losses and Storage Challenges

Post-harvest losses (PHLs) continue to be a major impediment to achieving global food security. Estimates suggest that losses range from 10% to 50% depending on crop type and region, with higher losses prevalent in developing countries due to infrastructural gaps and climatic challenges. Cereals, roots, tubers, fruits, and vegetables are the most affected categories. Table 1 summarizes average loss percentages across these crop groups globally.

Table 1: Average post-harvest loss percentages by crop type globally

Crop Type	Average Post-Harvest Loss (%)	Primary Causes	
Cereals	15-30	Insect pests, moisture, poor storage	
Roots & Tubers	20-40	Microbial spoilage, physical damage	
Fruits & Vegetables	30-50	Mechanical damage, rapid respiration, fungal infection	

These losses not only reduce food availability but also lead to significant economic setbacks for smallholder farmers, who rely on the marketability of their produce. The primary drivers include inadequate drying, improper storage facilities, insect infestation, and temperature and humidity fluctuations.

Traditional Storage Methods: Limitations and Risks

Traditional storage methods—such as open-air sun drying, storage in woven baskets, clay pots, and conventional granaries—have long been practiced but present significant limitations. These methods offer minimal protection against pests and moisture ingress and fail to maintain optimal temperature or humidity. As a result, produce stored under these conditions often suffers high rates of infestation by insects like weevils and beetles, fungal growth leading to aflatoxin contamination, and physical degradation.

For example, studies in sub-Saharan Africa report losses of up to 40% in maize stored using traditional granaries, primarily due to the maize weevil (Sitophilus zeamais). Similarly, root crops stored in poorly ventilated spaces suffer rapid spoilage due to fungal infections and high moisture content.

Modern Storage Technologies: Innovations and Efficacy

Hermetic Storage

Hermetic storage refers to airtight containment systems that prevent oxygen exchange, thereby limiting pest survival and fungal growth. Technologies include hermetic bags (e.g., Purdue Improved Crop Storage (PICS) bags), sealed silos, and containers.

Multiple studies show hermetic storage can reduce postharvest losses by 50-80% compared to traditional methods. For instance, maize stored in PICS bags for six months exhibited less than 5% weight loss and maintained grain quality, whereas conventional storage saw losses exceeding 30%. Figure 1 illustrates the comparative efficacy of hermetic vs. traditional storage in maize preservation.

Hermetic technologies also reduce the need for chemical pesticides, contributing to safer food and environmental sustainability. These solutions are low-cost, scalable, and suited to smallholder contexts, which has facilitated their adoption in countries like Nigeria, Kenya, and India.

Controlled Atmosphere (CA) Storage

CA storage regulates oxygen, carbon dioxide, and humidity levels within storage chambers to slow produce respiration and spoilage. This technology is extensively used for fruits and vegetables, especially apples, tomatoes, and berries, where shelf-life extension is crucial.

Studies indicate that CA storage can double or triple storage duration while preserving nutritional quality and sensory attributes. For example, apples stored under CA conditions maintain firmness and reduce decay incidence by up to 40% compared to ambient storage. However, CA storage requires specialized infrastructure and energy, limiting its use in resource-poor settings.

Drying Technologies

Drying is a fundamental pre-storage process to reduce moisture content, inhibiting microbial growth and insect development. Improved drying technologies include solar dryers, mechanical dryers, and hybrid systems.

Solar dryers harness renewable energy to provide controlled drying environments, reducing drying time and contamination risks compared to open sun drying. Trials with solar dryers in Vietnam and Ethiopia have demonstrated moisture reductions from 30% to below 13% within 24-48 hours, significantly reducing spoilage.

Mechanical dryers, although more costly, provide uniform and faster drying and are often used for high-value crops like coffee and spices. Their application is limited in smallholder farming due to cost and energy needs.

Cold Storage and Refrigeration

Cold storage slows down metabolic processes and microbial activity in perishable produce. It is critical for high-value fruits, vegetables, dairy, and meat products. Despite its effectiveness, the high costs of installation and energy consumption, along with unreliable power supply in many rural areas, limit cold storage accessibility.

Emerging technologies such as solar-powered refrigeration and phase-change material-based cold storage show promise in overcoming these challenges.

Impact of Improved Storage Technologies on Food Security

The adoption of improved storage technologies has shown direct and indirect benefits for food security. Quantitative evidence from multiple case studies is summarized in Table 2.

Table 2: Summary of impacts of improved storage technologies

Technology	Loss Reduction (%)	Shelf-Life Extension	Economic Impact	Food Security Impact
Hermetic Storage	50-80	3-6 months	Increased income by 20-40%	Improved availability and
			in smallholders	affordability
Controlled Atmosphere	40-60	2-4 weeks	Reduced spoilage losses for	Nutritional quality maintained,
			exporters	market stability
Solar Dryers	30-50	N/A	Reduced post-harvest spoilage	Enhanced food preservation,
			costs	farmer empowerment
Cold Storage	50-70	Weeks to months	Market price stabilization,	Enhanced access to perishable
			reduced waste	nutritious foods

These technologies contribute to stabilizing food supplies, reducing seasonal gluts and shortages, and enhancing farmer incomes. Improved storage also helps maintain the nutritional quality of food, an important factor in combating hidden hunger and malnutrition.

Barriers to Adoption

Despite their proven benefits, several barriers inhibit widespread adoption of improved storage technologies:

- Economic Constraints: High upfront costs, especially for mechanical dryers, controlled atmosphere storage, and cold storage units, limit access for smallholder farmers.
- Lack of Awareness and Training: Many farmers remain unaware of improved storage options or lack the technical knowledge to operate and maintain these technologies effectively.
- Infrastructure Deficiencies: Poor rural infrastructure, including unreliable electricity and transportation, reduces technology effectiveness and adoption.
- Cultural Preferences: Traditional storage practices are deeply rooted in many communities, and resistance to change can slow adoption.
- Policy and Institutional Gaps: Inadequate government support, subsidies, and extension services limit scaleup.

Emerging Innovations and Future Directions

Innovations such as mobile app-based pest monitoring, integration of IoT sensors for real-time monitoring of storage conditions, and solar-powered cold storage units are promising solutions to overcome existing challenges. Furthermore, combining multiple technologies (e.g., solar drying followed by hermetic storage) has shown synergistic effects in reducing losses.

Collaborative efforts among governments, NGOs, private sector, and research institutions are essential to develop context-specific solutions, ensure affordability, and promote farmer training.

Discussion

The review reveals that post-harvest losses remain a critical challenge undermining food security, particularly in resource-limited settings where traditional storage methods prevail. The quantitative and qualitative evidence underscores the transformative potential of improved storage technologies in preserving food quantity and quality, thereby enhancing availability and access.

Hermetic storage emerges as a highly effective and accessible technology for grain storage, with significant loss reductions and income benefits. Its success demonstrates how relatively simple, low-cost innovations can yield substantial impacts. Controlled atmosphere storage, while technologically advanced and effective for perishables, requires infrastructure and energy inputs that are barriers in many developing regions. Hence, CA storage currently serves more commercial and export markets than smallholder farmers.

Drying technologies represent a foundational step in postharvest management, preventing moisture-related spoilage across crops. Solar dryers, in particular, offer an affordable and sustainable alternative to open sun drying, though their adoption hinges on local capacity-building and availability. Cold storage remains the gold standard for perishable foods but suffers from infrastructural and cost limitations. Innovations in renewable energy-powered refrigeration could expand its reach, thereby reducing waste of nutrientdense foods critical for balanced diets.

Nevertheless, technological solutions alone are insufficient. The complex socio-economic context necessitates integrated approaches involving policy frameworks that incentivize adoption, extension services providing technical training, and infrastructure investments to support supply chains.

Moreover, climate change introduces new challenges to post-harvest storage by altering pest dynamics and exacerbating temperature extremes, which necessitates resilient and adaptive storage solutions.

In conclusion, improved storage technologies offer a promising pathway to reduce post-harvest losses and enhance food security globally. However, their success depends on overcoming economic, institutional, and cultural barriers through coordinated efforts among stakeholders. Future research should focus on scalable, affordable, and climate-resilient storage innovations tailored to diverse agro-ecological and socio-economic contexts.

Conclusion

Improved storage technologies are vital tools for reducing post-harvest losses and enhancing food security worldwide. Hermetic storage stands out as a cost-effective, scalable solution for smallholder farmers, significantly reducing losses and pesticide use. Controlled atmosphere storage and cold storage offer substantial benefits for perishable commodities but require infrastructure and financial investments that limit accessibility in resource-poor settings. Advances in drying technologies complement storage by improving moisture control, a critical factor in spoilage prevention.

Despite technological progress, widespread adoption faces economic, infrastructural, and cultural barriers that must be addressed through integrated approaches involving policy interventions, farmer education, and infrastructural development. Climate change adds urgency to these efforts by increasing storage challenges, necessitating resilient and adaptive technologies.

In sum, combining technological innovation with supportive institutional frameworks can substantially reduce food losses, stabilize supply chains, and contribute to achieving global food security and sustainable agricultural development.

References

- 1. Affognon H, Mutungi C, Sanginga P, Borgemeister C. Unpacking postharvest losses in sub-Saharan Africa: A meta-analysis. World Dev,2015:66:49-68. https://doi.org/10.1016/j.worlddev.2014.08.002
- Amiri M, Maroufpoor E, Hosseini SJF. Solar-powered refrigeration for cold chain in developing countries: A review of technology and applications. Renew Sustain Energy Rev,2021:145:111075. https://doi.org/10.1016/j.rser.2021.111075
- 3. Baoua IB, Amadou L, Ousmane B, Murdock LL. Performance of triple bag hermetic technology for postharvest preservation of cowpea grain in Niger. J Stored Prod Res,2014:58:24-8. https://doi.org/10.1016/j.jspr.2014.02.002

- 4. Golob P, Muir WE, Murdock LL. Hermetic storage of grains and pulses. J Stored Prod Res,2013:54:1-6. https://doi.org/10.1016/j.jspr.2013.06.001
- 5. Kader AA. Increasing food availability by reducing postharvest losses of fresh produce. Acta Hortic,2005:682:2169-76. https://doi.org/10.17660/ActaHortic.2005.682.279
- 6. Kader AA, Rolle RS. The role of postharvest management in assuring the quality and safety of horticultural produce. Food Control,2004:15(4):287-98. https://doi.org/10.1016/S0956-7135(03)00062-0
- 7. Mujumdar AS. Drying technology in agricultural and food industries. Food Bioprocess Technol,2006:1(1):138-55. https://doi.org/10.1007/s11947-006-0025-7
- 8. Nordell B, Kajl S, Kessler J. Solar refrigeration for rural cold storage: An assessment of technologies and markets. Renew Energy,2014:68:115-21. https://doi.org/10.1016/j.renene.2014.02.040
- Prakash A, Kumar P, Chauhan SS. Climate change impacts on postharvest losses: Challenges and opportunities. Environ Sci Pollut Res,2020:27:27482-94. https://doi.org/10.1007/s11356-020-09218-5
- 10. Saltveit ME. Controlled atmosphere storage of fruits and vegetables. Postharvest Biol Technol, 2016:122:1-9. https://doi.org/10.1016/j.postharvbio.2016.01.002